
DM74LS48 BCD to 7-Segment Decoder

General Description

The 'LS48 translates four lines of BCD (8421) input data into the 7-segment numeral code and provides seven corresponding outputs having pull-up resistors, as opposed to totem pole pull-ups. These outputs can serve as logic signals, with a HIGH output corresponding to a lighted lamp segment, or can provide a 1.3 mA base current to npn lamp driver transistors. Auxiliary inputs provide lamp test, blanking and cascadable zero-suppression functions.

The 'LS48 decodes the input data in the pattern indicated in the Truth Table and the segment identification illustration.

Connection Diagram

DM74LS48 BCD to 7-Segment Decoder

January 1992

©1995 National Semiconductor Corporation TL/F/10172

RRD-B30M105/Printed in U. S. A.

Absolute Maximum Ratings (Note)

Supply Voltage	7V
Input Voltage	7V
Operating Free Air Temperature Range	
DM74LS	$0^{\circ}C$ to $+70^{\circ}C$
Storage Temperature Range	-65° C to $+150^{\circ}$ C

Note: The "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. The device should not be operated at these limits. The parametric values defined in the "Electrical Characteristics" table are not guaranteed at the absolute maximum ratings. The "Recommended Operating Conditions" table will define the conditions for actual device operation.

Recommended Operating Conditions

Symbol	Parameter		DM74LS48		Units
- Oymbol	i aranieter	Min	Nom	Max	
V _{CC}	Supply Voltage	4.75	5	5.25	V
VIH	High Level Input Voltage	2			V
VIL	Low Level Input Voltage			0.8	V
I _{OH}	High Level Output Current			-50	μΑ
IOL	Low Level Output Current			6.0	mA
T _A	Free Air Operating Temperature	0		70	°C

Electrical Characteristics over recommended operating free air temperature range (unless otherwise noted)

Symbol	Parameter	Conditions	Min	Typ (Note 1)	Max	Units	
VI	Input Clamp Voltage	$V_{CC} = Min$, $I_I = -18 \text{ mA}$			-1.5	V	
V _{OH}	High Level Output Voltage	V_{CC} Min, $I_{OH} =$ Max, $V_{IL} =$ Max	2.4			v	
I _{OFF}	Output High Current Segment Outputs	$V_{CC} = Min, V_O = 0.85V$	-1.3			mA	
V _{OL}	V _{OL} Low Level Output Voltage	$\label{eq:V_CC} \begin{split} V_{CC} &= \text{Min}, \text{I}_{OL} = \text{Max}, \\ V_{IH} &= \text{Min} \end{split}$			0.5	v	
		$I_{OL} = 2.0 \text{ mA}, V_{CC} = Min$			0.4		
lj –	Input Current @ Max Input Voltage	$V_{CC} = Max, V_1 = 7V$			0.1	mA	
IIH	High Level Input Current	$V_{CC} = Max, V_I = 2.7V$			20	μΑ	
IIL	Low Level Input Current	$V_{CC} = Max, V_I = 0.4V$			-0.4	mA	
I _{OS}	Short Circuit Output Current	$V_{CC} = Max, V_O = 0V$ at BI/RBO (Note 2)	-0.3		-2	mA	
Іссн	Supply Current	$V_{CC} = Max, V_{IN} = 4.5V$			38	mA	

Note 1: All typicals are at V_{CC}\,=\,5V,\,T_{A}\,=\,25^{\circ}C.

Note 2: Not more than one output should be shorted at a time, and the duration should not exceed one second.

Switching Characteristics at $V_{CC} = 5V$ and $T_A = 25^{\circ}C$

Parameter	C _L =	Units			
l'alanciel	Min	Max			
Propagation Delay Time A _n to a–g		100 100	ns		
Propagation Delay Time $\overline{\text{RBI}}$ to a-f		100 100	ns		
	A _n to a-g Propagation Delay Time	Parameter - Min Min Propagation Delay Time An to a - g Propagation Delay Time Image: Compare the second	Min Max Propagation Delay Time 100 An to a-g 100 Propagation Delay Time 100		

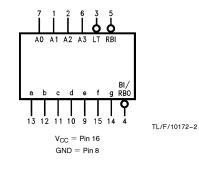
Numerical Designations—Resultant Displays

15 TL/F/10172-4

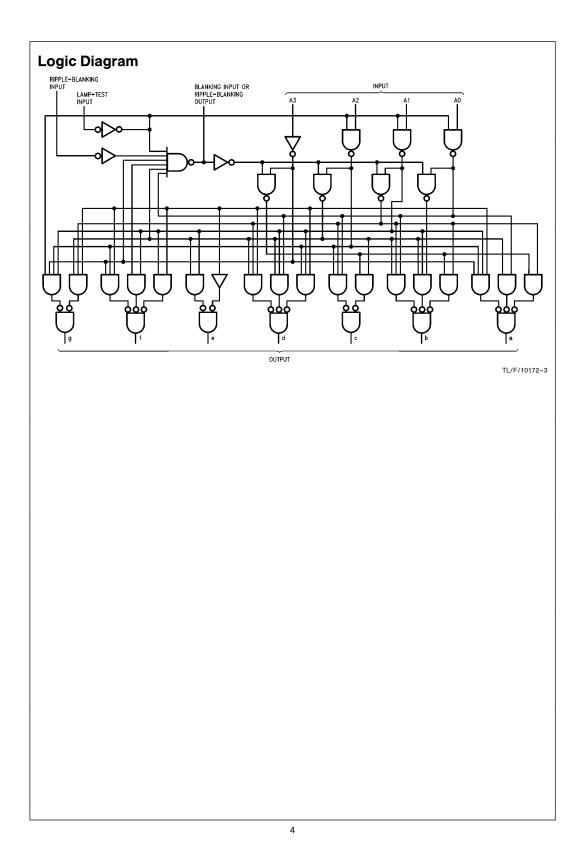
12 13 14

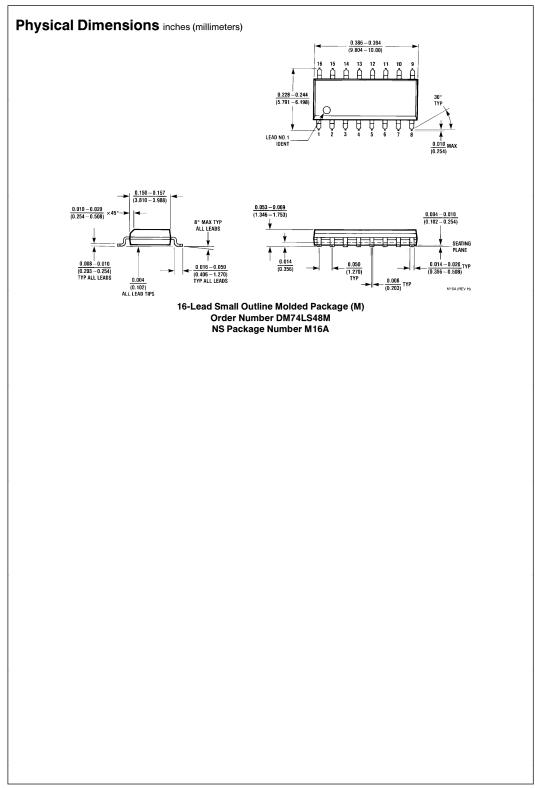
Truth Table

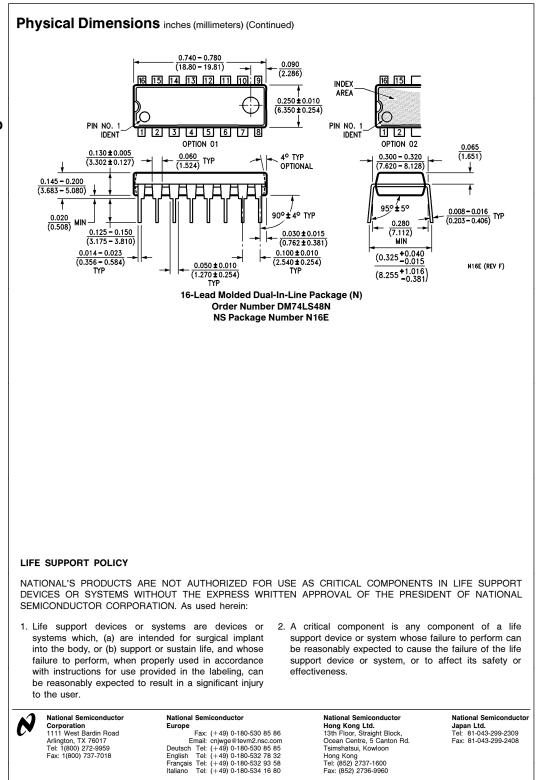
Decimal			Inp	uts				Outputs						
Or Function	다	RBI	A ₃	A ₂	A ₁	A ₀	BI/RBO	а	b	с	d	е	f	g
0 (Note 1)	н	н	L	L	L	L	Н	н	н	Н	н	н	н	L
1 (Note 1)	н	x	L	L	L	н	н	L	Н	Н	L	L	L	L
2	н	X	L	L	н	L	н	н	Н	L	Н	н	L	Н
3	н	x	L	L	Н	Н	Н	н	Н	Н	Н	L	L	F
4	н	x	L	н	L	L	н	L	н	н	L	L	н	Н
5	н	Х	L	н	L	н	н	н	L	Н	Н	L	Н	H
6	н	Х	L	н	н	L	н	L	L	Н	Н	н	Н	H
7	н	Х	L	н	н	н	н	н	Н	Н	L	L	L	L
8	н	х	н	L	L	L	Н	н	Н	н	н	н	Н	ŀ
9	н	x	н	L	L	н	н	н	н	н	L	L	н	ŀ
10	н	Х	н	L	н	L	н	L	L	L	Н	н	L	H
11	н	Х	н	L	н	н	н	L	L	Н	Н	L	L	I
12	н	Х	н	н	L	L	н	L	Н	L	L	L	Н	H
13	н	Х	н	Н	L	Н	Н	н	L	L	Н	L	Н	ł
14	н	x	н	н	н	L	н	L	L	L	н	н	н	H
15	н	Х	н	н	н	н	н	L	L	L	L	L	L	I
BI (Note 2)	X	X	X	Х	Х	Х	L	L	L	L	L	L	L	l
RBI (Note 3)	н	L	L	L	L	L	L	L	L	L	L	L	L	I
LT (Note 4)	L	х	X	Х	Х	Х	н	н	Н	Н	Н	н	Н	H


Note 1: BI/RBO is wired-AND logic serving as blanking input (Bi) and/or ripple-blanking output (RBO). The blanking out (Bi) must be open or held at a HIGH level when output functions 0 through 15 are desired, and ripple-blanking input (RBI) must be open or at a HIGH level if blanking of a decimal 0 is not desired. X = input may be HIGH or LOW.

Note 2: When a LOW level is applied to the blanking input (forced condition) all segment outputs go to a LOW level, regardless of the state of any other input condition.


Note 3: When ripple-blanking input (RBI) and inputs A₀, A₁, A₂, and A₃ are at LOW level, with the lamp test input at HIGH level, all segment outputs go to a LOW level and the ripple-blanking output (RBO) goes to a LOW level (response condition).


Note 4: When the blanking input/ripple-blanking output (BI/RBO) is open or held at a HIGH level, and a LOW level is applied to lamp test input, all segment outputs go to a HIGH level.


Logic Symbol

3

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications

This datasheet has been downloaded from:

www.DatasheetCatalog.com

Datasheets for electronic components.

National Semiconductor was acquired by Texas Instruments.

http://www.ti.com/corp/docs/investor_relations/pr_09_23_2011_national_semiconductor.html

This file is the datasheet for the following electronic components:

74LS48 - http://www.ti.com/product/74Is48?HQS=TI-null-null-dscatalog-df-pf-null-wwe